On the Hausdorff volume in sub-Riemannian geometry
نویسندگان
چکیده
For a regular sub-Riemannian manifold we study the Radon-Nikodym derivative of the spherical Hausdorff measure with respect to a smooth volume. We prove that this is the volume of the unit ball in the nilpotent approximation and it is always a continuous function. We then prove that up to dimension 4 it is smooth, while starting from dimension 5, in corank 1 case, it is C (and C on every curve) but in general not C. These results answer to a question addressed by Montgomery about the relation between two intrinsic volumes that can be defined in a sub-Riemannian manifold, namely the Popp and the Hausdorff volume. If the nilpotent approximation depends on the point (that may happen starting from dimension 5), then they are not proportional, in general.
منابع مشابه
On the Spherical Hausdorff Measure in Step 2 Corank 2 Sub-Riemannian Geometry
In this paper, we consider generic corank 2 sub-Riemannian structures, and we show that the Spherical Hausdorf measure is always a C-smooth volume, which is in fact generically Csmooth out of a stratified subset of codimension 7. In particular, for rank 4, it is generically C 2 . This is the continuation of a previous work by the auhors. subjclass: 53C17, 49J15, 58C35
متن کاملSub-Lorentzian Geometry on Anti-de Sitter Space
Sub-Riemannian Geometry is proved to play an important role in many applications, e.g., Mathematical Physics and Control Theory. Sub-Riemannian Geometry enjoys major differences from the Riemannian being a generalization of the latter at the same time, e.g., geodesics are not unique and may be singular, the Hausdorff dimension is larger than the manifold topological dimension. There exists a la...
متن کاملHausdorff volume in non equiregular sub-Riemannian manifolds
In this paper we study the Hausdorff volume in a non equiregular sub-Riemannian manifold and we compare it with a smooth volume. We first give the Lebesgue decomposition of the Hausdorff volume. Then we study the regular part, show that it is not commensurable with the smooth volume, and give conditions under which it is a Radon measure. We finally give a complete characterization of the singul...
متن کاملHausdorff measures and dimensions in non equiregular sub-Riemannian manifolds
This paper is a starting point towards computing the Hausdorff dimension of submanifolds and the Hausdorff volume of small balls in a sub-Riemannian manifold with singular points. We first consider the case of a strongly equiregular submanifold, i.e., a smooth submanifold N for which the growth vector of the distribution D and the growth vector of the intersection of D with TN are constant on N...
متن کاملVolume Preserving Bi-lipschitz Homeomorphisms on the Heisenberg Group
The use of sub-Riemannian geometry on the Heisenberg group H(n) provides a compact picture of symplectic geometry. Any Hamiltonian diffeomorphism on R lifts to a volume preserving bi-Lipschitz homeomorphisms of H(n), with the use of its generating function. Any curve of a flow of such homeomorphisms deviates from horizontality by the Hamiltonian of the flow. From the metric point of view this m...
متن کامل